Detection and Estimation of Wake Vortex on Ultra Fast-Scanning Pulsed-Doppler Lidar

Ei-ichi Yoshikawa and Naoki Matayoshi
Japan Aerospace Exploration Agency, Tokyo, Japan
Outline

1. Introduction
 - Narita Observation Campaign
 - Motivation
 - Lidar and Scanning Strategy

2. Examples of Estimated Results
 - Simulation
 - Application to Real Data

3. Conclusion
Introduction

◆ Narita Observation Campaign
 (see details in the PPT file by N. Matayoshi)

 ➢ Development of WV database in Narita Airport, Japan
 ✓ Large number of samples with high-quality estimation by using a fast-scanning Doppler lidar
 ✓ Update of safe separation in RECAT-3
 ✓ Traffic optimization

 ➢ Real-time detection, and estimation
 ✓ Provide WV information in (quasi) real time
Introduction

◆ Motivation

➢ Lidar – *Practical simpleness for observation*
 ✓ Single-lidar observation
 ✓ High scan rate

Windcube200S, Leosphere

➢ Algorithm – *High accuracy and robustness for low CNR*
 ✓ Pulsed-Doppler lidar has low range resolution (tens of meters) with current technology
 ✓ Need to extract small structure of a WV (< 15 m) from low range resolution (tens of meters) measurements.
 ✓ Low-order moments of Doppler spectrum are not good enough because min and max velocities of a WV are not considered.
 ✓ Detection of min and Max velocities in a Doppler spectrum is valid. But not robust for a low CNR condition

Proposal of a method with high estimation accuracy and robustness for a low CNR condition
Introduction

◆ Lidar and Scanning Strategy

 Lidar
 ✓ Windcube200S, Leosphere
 ✓ Pulsed-Doppler Type
 ✓ Wavelength: 1543 nm
 ✓ Max power: 5 mW
 ✓ Pulse Repetition: 20 kHz
 ✓ Digital Sampling rate: 250 MHz

 Scanning Strategy
 ✓ RHI: 0 – 40 deg for landing aircrafts
 ✓ 20 – 60 deg for take-off aircrafts
 ✓ Scan duration: 6 sec (+ 2 sec to reset)
 ✓ Range sampling: Every 5 m; 100 – 885 m
 (physical range resolution: 48 m)
 ✓ Elevation sampling: Every 0.2 deg
 ✓ Velocity sampling: Every 3 m/sec; -30 – 30 m/sec
Methodology

Traditional Methods

- Measurement

 ✓ Pulsed-Doppler lidar has low range resolution of tens of meters (much larger than core size of WV).
 ✓ Based on 1st moment: Min and max velocities of a WV are NOT considered.
 ✓ Addition of 2nd moment: Doppler spectrum is approximated by a (symmetry) Gaussian distribution. But Gaussian is NOT suitable for a WV case.
 ✓ Based on min and max velocities in a Doppler spectrum: Can provide high estimation accuracy. But not robust for low CNR. (In general, fast-scanning links to low CNR)

- Deterministic Calculation

 ✓ Measurement always includes fluctuation.
 ✓ Need to consider measurement error especially in a low CNR condition
Example of Estimation Results

- Simulation Case 1/4
 - Large cores (left: 6.0 m, right: 6.5 m)
 - No background wind

<table>
<thead>
<tr>
<th>Parameters</th>
<th>1st moment based method</th>
<th>Proposed method</th>
<th>Simulation Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y (m)</td>
<td>279.7</td>
<td>279.8</td>
<td>280</td>
</tr>
<tr>
<td>z (m)</td>
<td>55.5</td>
<td>55.0</td>
<td>55</td>
</tr>
<tr>
<td>(\Gamma_{5-15}) (m²/sec)</td>
<td>-183.6</td>
<td>-318.2</td>
<td>-281.0</td>
</tr>
<tr>
<td>Right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y (m)</td>
<td>341.4</td>
<td>340.7</td>
<td>340</td>
</tr>
<tr>
<td>z (m)</td>
<td>50.4</td>
<td>50.1</td>
<td>50</td>
</tr>
<tr>
<td>(\Gamma_{5-15}) (m²/sec)</td>
<td>205.1</td>
<td>347.5</td>
<td>301.9</td>
</tr>
</tbody>
</table>

Both methods show excellent agreements in estimated location.

For circulation, errors are reduced roughly from 65% to 10%.
Example of Estimation Results

Simulation Case 2/4

- Large cores
 (left: 6.0 m, right: 6.5 m)
- With background wind

<table>
<thead>
<tr>
<th></th>
<th>Parameters</th>
<th>1st moment based method</th>
<th>Proposed method</th>
<th>Simulation Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>y (m)</td>
<td>284.6</td>
<td>279.2</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>z (m)</td>
<td>56.4</td>
<td>55.3</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Γ_{5-15} (m2/sec)</td>
<td>-194.9</td>
<td>-316.3</td>
<td>-281.0</td>
</tr>
<tr>
<td>Right</td>
<td>y (m)</td>
<td>336.3</td>
<td>339.8</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>z (m)</td>
<td>50.9</td>
<td>50.0</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Γ_{5-15} (m2/sec)</td>
<td>185.4</td>
<td>298.8</td>
<td>301.9</td>
</tr>
</tbody>
</table>

Even with background wind, accuracy is almost equivalent.
Example of Estimation Results

◆ Simulation Case 3/4
 ➢ Small cores
 (left: 3.0 m, right: 2.0 m)
 ➢ No background wind

Simulated Radial Wind Field

<table>
<thead>
<tr>
<th>Parameters</th>
<th>1st moment based method</th>
<th>Proposed method</th>
<th>Simulation Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y (m)</td>
<td>279.7</td>
<td>280.0</td>
<td>280</td>
</tr>
<tr>
<td>z (m)</td>
<td>54.9</td>
<td>55.0</td>
<td>55</td>
</tr>
<tr>
<td>Γ_{5-15} (m²/sec)</td>
<td>-213.1</td>
<td>-397.6</td>
<td>-358.8</td>
</tr>
<tr>
<td>Right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y (m)</td>
<td>341.4</td>
<td>337.5</td>
<td>340</td>
</tr>
<tr>
<td>z (m)</td>
<td>50.4</td>
<td>49.7</td>
<td>50</td>
</tr>
<tr>
<td>Γ_{5-15} (m²/sec)</td>
<td>265.5</td>
<td>471.1</td>
<td>427.7</td>
</tr>
</tbody>
</table>

Small WVs (cores < range gate, 5 m) are also estimated with equivalent accuracy.
Example of Estimation Results

Simulation Case 4/4

- Small cores (left: 3.0 m, right: 2.0 m)
- With background wind

<table>
<thead>
<tr>
<th>Parameters</th>
<th>1st moment based method</th>
<th>Proposed method</th>
<th>Simulation Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y (m)</td>
<td>279.5</td>
<td>280.1</td>
<td>280</td>
</tr>
<tr>
<td>z (m)</td>
<td>55.9</td>
<td>55.2</td>
<td>55</td>
</tr>
<tr>
<td>Γ_{5-15} (m(^2)/sec)</td>
<td>-245.9</td>
<td>-408.4</td>
<td>-358.8</td>
</tr>
<tr>
<td>Right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y (m)</td>
<td>336.2</td>
<td>341.4</td>
<td>340</td>
</tr>
<tr>
<td>z (m)</td>
<td>50.9</td>
<td>50.1</td>
<td>50</td>
</tr>
<tr>
<td>Γ_{5-15} (m(^2)/sec)</td>
<td>262.1</td>
<td>440.2</td>
<td>427.7</td>
</tr>
</tbody>
</table>

Even with background wind, accuracy is almost equivalent.
Example of Estimation Results

- Application to Real Data 1/6
 Temporal progress of WVs (8 sec interval between adjacent RHIs)

![Measured Radial Wind Field](image)
Example of Estimation Results

Application to Real Data 2/6
Temporal progress of WVVs (8 sec interval between adjacent RHIs)

Measured Radial Wind Field

- range (m)
- height (m)
- radial wind velocity (m/sec)
Example of Estimation Results

Application to Real Data 3/6
Temporal progress of WVs (8 sec interval between adjacent RHIs)
Example of Estimation Results

- Application to Real Data 4/6
 Temporal progress of WVs (8 sec interval between adjacent RHIs)
Example of Estimation Results

- Application to Real Data 5/6
 Temporal progress of WVs (8 sec interval between adjacent RHIs)
Example of Estimation Results

- Application to Real Data 6/6
 Temporal progress of WVs (8 sec interval between adjacent RHIs)
Conclusion

- An algorithm to detect a WV and estimate WV parameters is developed.
- Motivation is to achieve high estimation accuracy even in a low CNR condition to obtain knowledge of WV characteristics with a large number of observations and to use it in real-time operations.
- Simulation results show a good estimation accuracy (location error is less than 1 m, circulation error is about 10 %)
- The application to real data resulted in a reasonable estimation.

- Statistical evaluation will be carried out with fresh (just-generated) WVs (comparing estimation with theoretical values derived from QAR data)