First approach to wake vortex predicting and detecting integrated fusion filters

Dipl.-Ing. Shanna Schönhals
Dipl.-Ing. Meiko Steen, Prof. Dr.-Ing. Peter Hecker
Outline

• motivation/current situation
• state-of-the-art approaches
 – prediction models
 – measurement technologies
• collaboration approach
• excursus filter technologies
• conclusions
Wake vortices
-
general motivation
Wake vortices as capacity limiting factors

- today: separation rules based on worst-case-scenario
 - assumed calm atmosphere, no lateral wind
 ➔ long wake vortex lifetime
- unnecessarily limiting capacities in favorable conditions
- but: separation reduction only possible while preserving safety level
- two approaches:
 - propagation of wake vortices by assessed models
 - detection and monitoring of wake vortices by dedicated sensors
 - operating quasi separately
Motivation for closer collaboration of model and sensor

• benefit from using complementary characteristics for the operational (real-time) use
• allows the use of different measurement input sources, e.g. airborne sensor AND information coming from ground
 ➔ ground/board interaction
• close collaboration model / sensor at different scanning patterns
• allows observation of not-measured quantities through observability to some extent, e.g.
 – fast changing met-conditions
 – a/c-weight
 – a/c-speed
• helps decision making
• on-time reduction of model uncertainties through sensor measurements could result in capacity gain
The Propagation
State-of-the-art approaches - prediction

- propagation of wake vortex behaviour
- models: P2P (DLR), PVM (UCL), AVOSS-PA (NASA)
 proven in several projects
- real-time prediction of:
 - turbulence strength (circulation)
 - vortex trajectory in y and z
 - uncertainty bounds
Prediction model: input parameters

- aircraft configuration
 - weight, span, speed

- weather conditions
 - wind profile
 - stratification
 - turbulence
 - wind shear

- ground proximity conditions

uncertainties
unknown or varying

lack of adequate spacial and
temporal resolution
measurement and forecasting
constraints
The Measurement
State-of-the-art approaches - detection

- wake vortex monitoring
 - measurement of wind velocities
 - focus on LIDAR (also X-band RADAR is a possibility)
 - research activities in several projects

- real-time measurement of:
 - turbulence strength (circulation)
 - vortex trajectory in y and z
 - range \(r \) and bearing \(\theta \) of the sensor
Complementary attributes of prediction and detection

<table>
<thead>
<tr>
<th>Model</th>
<th>Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>good knowledge of vortex behaviour</td>
<td>limited field of view/difficulties in flow field identification</td>
</tr>
<tr>
<td>forecast ability</td>
<td>no information about vortex state between measurements or due to loss of track</td>
</tr>
<tr>
<td>short term stability</td>
<td>limited accuracy/noise</td>
</tr>
<tr>
<td>high prediction update rate</td>
<td>low measurement update rate</td>
</tr>
<tr>
<td>no real-time information update through measurement</td>
<td>physical wake detection</td>
</tr>
<tr>
<td>no update of changed meteorological conditions</td>
<td>updated information of vortex state</td>
</tr>
<tr>
<td>increasing uncertainty bounds due to model or met input uncertainties</td>
<td>decreased uncertainties on measurement update</td>
</tr>
</tbody>
</table>

- Typical example of two complementary systems
- Taking advantage by using only the positive characteristics of each system
Using complementary attributes

fused uncertainty bounds could be extracted from filters covariance

current uncertainty bounds relatively large

measurement-updates
Fusion filter concept
for
model / sensor collaboration
Collaboration approach

Model / Prediction

Measurement

Model / Prediction

Measurement

[www.cerfacs.fr]

[www.eurocontrol.be]
Collaboration approach

- two steps:
 - a time update - system state is predicted based on current state
 - a measurement update - performed when new sensor data are available

\[x_0, P_0 \]
Some illustrating examples
Example with simplified model

- constant velocity
 - measurements at low frequency
 - short time accurate information between measurements

\[x_k^- = x_{k-1}^+ + \dot{x}_{k-1}^+ \cdot \Delta T_s \]

New position = old position + old velocity * sample Time

Estimated Position corrected by difference model <-> measurement
Example with specific model

- tracking object example: cannon-launched projectile tracking
 - model of movement exists (e.g. gravity, drag)
 ➔ high frequent prediction
 - low frequent measurement updates model
Back to collaboration
Fusion Filter concept for collaboration

Time-update
- **State**: WV traffic, MET, LIDAR-angles
- **Model state transition**: ~ established prediction models
- **Covariance**: ~ uncertainty bounds in current models, decreased by measurement

Measurement-update
- **State**: WV traffic, MET, LIDAR-angles
- **Covariance**: ~ uncertainty bounds in current models, decreased by measurement
- **Measured quantities**: position, strength, range, bearing, TBD)
- **Error/uncertainty-feedback**

x_0, P_0

Update on new prediction
Update on new measurement
Uncoupled

LIDAR / RADAR → processing → \(\Gamma, x, y, z \)

A/C data, MET data → WV-model → \(\Gamma, x, y, z \)

current status
Loose coupled approaches

- LIDAR / RADAR
- Processing
- Fusion Filter error state
- A/C data
- MET data
- WV-model
- Output

\[\Gamma, x, y, z \]

\[\Delta \Gamma, \Delta x, \Delta y, \Delta z \]

Model and sensor independent, but collaborative output
Loose coupled approaches

- LIDAR / RADAR → processing → Fusion Filter error state
- A/C data, MET data → WV-model → Fusion Filter error state

Output:
- Γ, x, y, z
- $\Delta \Gamma, \Delta x, \Delta y, \Delta z$

Model accepts and processes corrections from collaboration
Loose coupled approaches

LIDAR / RADAR → processing → \(\Gamma, x, y, z \) → integrated collaborative prediction and measurement system

A/C data
MET data → output

fully collaborative system
Conclusions

- model predictions and measurement are complementary
- taking advantages by collaboration of both
- first implementation results show proof-of-concept
 - keeping in mind, that the WV behaviour is not modelled within the filters yet
 ➔ results show that fusion approach is applicable for future WV prediction and detection systems
 - integration of prediction model should be proposed
- further applications
 - enhance detection ability of sensors
 ➔ involve processing of sensor into collaborative system
Acknowledgement

This work has been co-financed by the European Organisation for the Safety of Air Navigation (EUROCONTROL) under its Research Grant scheme.

The content of the work does not necessarily reflect the official position of EUROCONTROL on the matter.

© 2008, EUROCONTROL and the University of Braunschweig. All Rights reserved.
Thank you for your attention!

Contact:

Dipl.-Ing. Shanna Schönhals
Dipl.-Ing. Meiko Steen
Institute of Flight Guidance, TU Braunschweig
Fon: +49 531 391 9858 / +49 531 391 9837
Mail: s.schoenhals@tu-bs.de / m.steen@tu-bs.de