Towards a Wake Encounter Advisory & Avoidance System – Recent work at DLR

Tobias Bauer, Dennis Vechtel
DLR Institute of Flight Systems

Southampton, May 10th & 11th, 2011
3rd Major Workshop WakeNet3-Europe
Content

- **Background:**
 DLR Internal Project “Wetter und Fliegen”

- **Motivation and Objectives:**
 Wake Encounter Advisory & Avoidance (WEAA) System

- **WEAA System Architecture**

- **Existing System Components**

- **Recent Work**
 - Trajectory Generation
 - (E)GPWS Alert Avoidance
 - Human Machine Interface

- **Future Work**

[Photo: Hahn]
Objective: Increased safety and efficiency of air traffic with weather information in the TMA and optimised aircraft behaviour

Time frame: 2008 - 2011

DLR & partners: DWD, HYDS, EADS

SP W: airport weather
integrated airport weather systems for wake vortex, thunderstorms and winter weather

SP F: aircraft behaviour
systems for control, monitoring and information for improved aircraft behaviour in gusts, wake vortices and thunderstorms
Motivation: Wake Encounter Advisory & Avoidance (WEAA)

- system for **tactical small-scale evasion** from wake vortices to avoid possibly hazardous wake encounters
- **pure safety net** function (no means of defining separation)
 - however, supports reduction of separation distances by providing mitigation measures
- pilots’ **situational awareness** is key issue
- evasion **without ATC request** (similar to TCAS)
 - stay within navigation limits
- **DLR objectives:**
 - system proof-of-concept, in-depth investigation of selected components
WEAA Objectives and Constraints

- **System Design Objectives**
 - increase the pilots’ situational awareness in case of a predicted, imminent or even current encounter
 - define, guide and monitor evasive manoeuvres (where possible)
 - NB: wake alleviation is not part of WEAA but can be integrated

- **Manoeuvre Design Constraints**
 - evasion without ATC request (similar to TCAS), i.e. within navigation limits
 - generally 4-D manoeuvre (adjustment of speed, track, flight path angle) possible but
 - ATC compatibility of speed changes
 - manoeuvre should be kept as simple as possible
 - no conflict with TCAS and/or (E)GPWS/TAWS generated
 - aircraft performance
 - passenger comfort (accelerations)
System Architecture: Functions

- **predict wake vortices** from performance data and planned trajectories of surrounding aircraft using meteorological data
- perform a **conflict detection**, using prediction of own trajectory, in connection with **hazard assessment** where required
- **generate evasion trajectory**, taking into account terrain data and surrounding traffic

- **define and display** required **evasive manoeuvres** to the pilots on PFD (and VSI)
- **generate overview display** on ND (and VSD) to increase pilots’ situational awareness
WEAA System Architecture

- **Modular architecture** gives possibility to
 - adapt single components without changing the whole system
 - combine components for different system architectures

- **Two design options**
 - evasion purely based on *wake prediction*
 - vortex habitation volumes grow significantly with vortex age
 - evasion based on combined *wake prediction and detection*
 - detection likely by LIDAR
 - most LIDARs deliver only line-of-sight measurements
 - vortex characterisation necessary
 - long-term perspective (sensor availability critical)
WEAA Functional System Breakdown (WV Prediction Only)

Sensors
- traffic data
 - type
 - configuration
 - traffic intent
 - flight path vector
 - weather/wind?

Data Preparation
- ADS-B
- TIS-B
- Decoding
- Range Filter

Detection/Prediction
- 4-D Trajectory Prediction (surrounding traffic)

Conflict Detection and Evaluation
- Safety Zone Traffic (for definition of evasion trajectory)

Conflict Resolution
- Information / Warning (Wake Vortex Advisory)
- Definition and Generation of Evasion Trajectory (type of manoeuvre, generation of trajectory)

WEAA System Boundary
- audio
- display
- ND
- VSI
- PFD
- FMA

Flight Performance Data (BADA ?)

4-D Prediction of own Trajectory
- flight plan
- A/P mode
- configuration
- mass

Flight Performance (flight phase dependent; passenger comfort)

Flight Phase Dependent Restraints (width of corridor; ground proximity)

Command generation
- implementation of evasive manoeuvres
- controller target values

Range Filter
- wind vector
- further meteo data?

ADIRU (WIMS ?)
- wind vector
- own flight state

FMS
- RNP
- XTK error

Terrain Data
- (data base; ground proximity)

EGPWS / TAWS
- G/S, LOC where necessary

FMGS
- flight plan
- A/P mode
- configuration
- mass

FMGC
- RNP
- XTK error

Terrain Data
- (data base; ground proximity)

Flight Phase Dependent Restraints
- (width of corridor; ground proximity)

Safety Zone Terrain
- (for definition of evasion trajectory)

Alerting
- wake vortex and traffic situation
- increased situational awareness

Command generation
- implementation of evasive manoeuvres
- controller target values

Conflict Resolution
- definition and generation of evasion trajectory

Command generation
- implementation of evasive manoeuvres
- controller target values

Conflicting Data
- traffic data
- type
- configuration
- traffic intent
- flight path vector
- weather/wind?

Conflict Detection and Evaluation
- wake vortex and traffic situation
- increased situational awareness

Command generation
- implementation of evasive manoeuvres
- controller target values

Conflicting Data
- traffic data
- type
- configuration
- traffic intent
- flight path vector
- weather/wind?
WEAA FBS: Existing Functions

4-D Wake Vortex Evolution Prediction

Wake Vortex Detection and Characterisation (PEst / Observer)

Hazard Assessment (e.g. hazard area, SHAPe)

Data Preparation

Detection/Prediction

Conflict Detection and Evaluation

Conflict Resolution

- 4-D Trajectory Prediction (surrounding traffic)
- 4-D Wake Vortex Evolution Prediction
- Wake Vortex Detection and Characterisation (PEst / Observer)
- 4-D Prediction of own Trajectory
- Flight Performance (flight phase dependent passenger comfort)
- Safety Zone Traffic (for definition of evasion trajectory)
- Flight Phase Dependent Rudder (roll of center of gravity)
- Safety Zone Terrain (for definition of evasion trajectory)
- Information / Warning (Wake Vortex Advisory)
- Conflict Detection (Wake Vortex)
- Hazard Assessment (e.g. hazard area, SHAPe)
- Command generation (implementation of evasive manoeuvres)
- HW (Information)
- Hazard Assessment (e.g. hazard area, SHAPe)
- HW (Information)
- Wake vortex and traffic situation
- Increased situational awareness
- Command generation
- Implementation of evasive manoeuvres
- Controller target values
- Ground Data (ground proximity)
- EGPWS / TAWS
- FMCS
- FMGS
- ADIRU (MIMU?)
- Monocular camera (ADIRU)
- LIDAR
- Signal Conditioning
- velocity field (possibly LIDAR)
- RNP
- XTK error
- QNS, LOC where necessary
WEAA: Exploitation of Existing DLR Knowledge

- **Vortex Prediction Model: P2P** *(HOLZÄPFEL)*
 - probabilistic two phase model
 - effects of a/c configuration, wind, wind shear, turbulence, stratification and ground proximity
 - real-time capability
 - extensively validated on LIDAR measurements and LES

- **Severity Assessment: SHAPe** *(HAHN, SCHWARZ)*
 - simplified hazard areas (rectangular or elliptical)
 - hazard rating by means of roll control ratio RCR

- **Wake Parameter Estimation: Online-ID** *(FISCHENBERG)*

T. Bauer & D. Vechtel, DLR, Wake Encounter Avoidance & Advisory System
WEAA FBS: Recent Work

Definition and Generation of Evasion Trajectory
(type of manoeuvre, generation of trajectory)

HMI (Information)
- wake vortex and traffic situation
- increased situational awareness

Conflict Detection
- Wake Vortex

Safety Zone Traffic
- Identification of evasion trajectory

Information / Warning (Wake Vortex Advisory)
- Wake Vortex

Hazard Assessment
- Wake vortex and traffic situation
- Increased situational awareness

Command generation
- Implementation of evasion manoeuvres
- Control of target values

System Boundary
- Audio
- Display
- ND
- VSI
- PFD
- FMA

Detection and Generation of Evasion Trajectory
(type of manoeuvre, generation of trajectory)

Flight Performance
- Flight phase dependent
- Passenger comfort

Flight Phase
- Dependent Constraints
- Wake vortex avoidance

Safety Zone Terrain
- Identification of evasion trajectory

Terrain Data
- Data fusion
- Ground proximity

GPS/ILS
- Data fusion
- Ground proximity

FMS
- RNP
- XTK error

FMS
- FMS Data
- Configuration
- Mass

FMS
- FMS Data
- Configuration
- Mass
Recent Work

Trajectory Generation

- trajectory generation using **potential field approach** (from robotics)
 - obstacles, boundaries surrounded by potential field modelled by super-quadratic ellipses
 - intended flight path as attracting potential
 ⇒ “automatic” return to cleared flight path
- trajectory smoothing
- lateral or vertical evasion
 ⇒ decision algorithm using encounter geometry
- status:
 - tested offline with A/P in cruise
 - simulator implementation in progress
- next step: (E)GPWS interoperability (inverted alerting boundary as limit)
Recent Work
Display Concepts

- simulator study conducted with **display concept similar to FLYSAFE** project (Airbus development, PFD + ND)
 - simplified evasion algorithm
 - visual and aural warnings
- wake **visualisation extended to vertical situation display** (VSD)
 - enhanced situational awareness
Summary: Objectives, Work So Far

- DLR is developing a Wake Encounter Advisory and Avoidance System (WEAA)
 - **tactical small-scale evasion** to avoid possibly hazardous wake encounters
 - **pure safety net** function
 - **interoperability with TCAS and (E)GPWS / TWAS** assured

- two design options
 - pure wake prediction
 - prediction + wake detection/characterisation (long term)

- existing DLR knowledge exploited:
 - WV prediction model
 - wake characterisation from forward-looking measurements
 - severity assessment

- on-going development of new system functions:
 - evasion trajectory generation using potential field approach
 - ground and traffic collision avoidance interoperability
 - pilot displays for **situational awareness**
Future Work: Where Do We Want to Go?

- **Component Function Development**
 - conflict detection concept and algorithms
 - refinement of conflict resolution algorithms taking into account
 - (E)GPWS & TCAS interoperability
 - passenger comfort
 - aircraft performance
 - ConOps for additional flight phases
 - analysis of different concepts for pilot assistance w.r.t. work load and situational awareness
 - enhanced severity assessment
 - enhanced wake characterisation with (LiDAR) measurement

- **System Proof of Concept**
 - implementation in engineering flight simulator
 - perspective: motion based simulator and flight test

- **Benefit Analysis**
Acknowledgements

Jobst Diekmann, Frank Holzäpfel, Christian Gall, Christian Raab, Carsten Schwarz

Your questions, remarks, suggestions are welcome…

Dipl.-Ing. Tobias Bauer
tobias.bauer@dlr.de
phone: +49 531 295-3258

Dipl.-Ing. Dennis Vechtel
dennis.vechtel@dlr.de
phone: +49 531 295-2606